HPV Type-Detect® 2.0
by Bio-Plex Analysis

THE NEXT GENERATION OF HPV DIAGNOSTICS
Orange fluorescence associated with the binding of the DNA template is detected allowing classification of the microsphere by the Bio-Plex instrument (2 hours).

An aliquot of the patient sample undergoes DNA extraction (1.5 hours).

Subsequent DNA amplification occurs via conventional PCR (1.5 hours).

Amplified DNA is introduced to the Bio-Plex process for detection (1 hour).

Suspended microspheres line up in single file to pass through a detection chamber where lasers excite the internal dyes.

Internally dyed microspheres react via coupling chemistry with oligonucleotide probe hybridized to the amplified DNA template.
Papillomaviruses are a diverse group of viruses that have been found in more than 20 different mammalian species, as well as birds and reptiles. In the 1980s, the newly developed techniques of molecular biology enabled the detection of many human papillomaviruses (HPVs) in benign and malignant lesions (1, 2). To date, there are more than 200 known HPV types. An HPV type is defined as a complete genome whose L1 gene sequence is at least 10% dissimilar to that of any other HPV type (3). Each Papillomavirus is highly tropic for a specific epithelium, and has its own degree of oncogenicity. HPV infections are associated with cancerous (cervical, neck, and throat) as well as benign lesions (condylomas and other dermatological warts).

Epidemiology

HPV infection is very common, though most infected individuals immune systems clear the virus without developing clinical manifestations. Thus, very few HPV-infected individuals progress to invasive cervical cancer. HPV type is a well established risk factor determinant for progression to cervical cancer. Over 40 HPV types infect the anogenital tract, 15 of them have been classified as high risk for development of cervical cancer, 3 have been classified as probable high-risk, 12 have been classified as low-risk and 3 are considered undetermined-risk (4, 5) (Table 1).

Table 1. Classification of HPV types by cervical oncogenicity (Munoz et al., 2003).

<table>
<thead>
<tr>
<th>Risk</th>
<th>HPV Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk</td>
<td>16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, 82</td>
</tr>
<tr>
<td>Probable high-risk</td>
<td>26, 53, 66</td>
</tr>
<tr>
<td>Low-risk</td>
<td>6, 11, 40, 42, 43, 44, 54, 61, 70, 72, 81, CP6108</td>
</tr>
<tr>
<td>Undetermined-risk</td>
<td>34, 57, 83</td>
</tr>
</tbody>
</table>

Prevalence

Prevalence of HPV infection among women around the world ranges from 2% to 40% (6). The wide variation in prevalence is due in part to the various sensitivities of the DNA-based assays used for the detection of HPV infection. In general, over 50% of sexually active women are infected by one or more HPV type. HPV-16, one of the most common types in cytologically normal women, is also the most common type among cervical cancer cases (7, 8, 9, 10, 11, 12). HPV types associated with an increased risk of malignancy vary with geographic location. For example, HPV-16 is found in 77% of cervical cancers in Germany, 71% in South America, 59% in the United States, but only 33% to 39% in Japan (13, 14, 15, 16). On the other hand, HPV-52 is found in 20% of invasive cervical cancers in Japan, but is only detected in 2% of cervical intraepithelial lesions or invasive cancer in the United States (17). It is unknown whether these geographic differences represent mutated HPV genomes, simple distribution of HPV types, genetic selection in various populations, or some other unknown mechanism. Table 2 details the prevalence of specific HPV subtypes among females age 14 to 59 years in the United States (18). Data collected by Medical Diagnostic Laboratories, L.L.C. (MDL) (n=40,000), more than 40% of anogenital HPV infections consist of multiple HPV subtypes.

Table 2. Prevalence of HPV types among females aged 14 to 59 years, NHANES 2003-2004.

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Sample Size</th>
<th>Prevalence % (95% Confidence Interval)</th>
<th>P Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall (age 14-59 years)</td>
<td>1921</td>
<td>26.8 (23.3-30.9)</td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-19</td>
<td>652</td>
<td>24.5 (19.6-30.5)</td>
<td>.003</td>
</tr>
<tr>
<td>20-24</td>
<td>189</td>
<td>44.8 (36.3-55.3)</td>
<td></td>
</tr>
<tr>
<td>25-29</td>
<td>174</td>
<td>27.4 (21.9-34.2)</td>
<td></td>
</tr>
<tr>
<td>30-39</td>
<td>328</td>
<td>27.5 (21.9-34.2)</td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td>324</td>
<td>25.2 (19.7-32.2)</td>
<td></td>
</tr>
<tr>
<td>50-59</td>
<td>254</td>
<td>19.6 (14.3-26.8)</td>
<td></td>
</tr>
<tr>
<td>Race †</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic white</td>
<td>837</td>
<td>24.2 (20.5-28.6)</td>
<td><.001</td>
</tr>
<tr>
<td>Non-Hispanic black</td>
<td>533</td>
<td>39.2 (31.0-49.4)</td>
<td></td>
</tr>
<tr>
<td>Mexican American</td>
<td>442</td>
<td>24.3 (19.3-30.8)</td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>Married</td>
<td>676</td>
<td>17.3 (14.0-21.5)</td>
<td></td>
</tr>
<tr>
<td>Widowed, divorced, separated</td>
<td>231</td>
<td>41.2 (32.3-52.4)</td>
<td></td>
</tr>
<tr>
<td>Never married</td>
<td>882</td>
<td>31.1 (28.1-34.5)</td>
<td></td>
</tr>
<tr>
<td>Living with partner</td>
<td>132</td>
<td>46.1 (35.2-60.4)</td>
<td></td>
</tr>
<tr>
<td>Education ‡</td>
<td></td>
<td></td>
<td>.006</td>
</tr>
<tr>
<td>< High school</td>
<td>383</td>
<td>35.0 (29.4-41.7)</td>
<td></td>
</tr>
<tr>
<td>High school and GED</td>
<td>380</td>
<td>29.7 (23.4-37.6)</td>
<td></td>
</tr>
<tr>
<td>> High school</td>
<td>754</td>
<td>24.7 (20.9-29.1)</td>
<td></td>
</tr>
<tr>
<td>Poverty index §</td>
<td></td>
<td></td>
<td>.005</td>
</tr>
<tr>
<td>Below poverty</td>
<td>503</td>
<td>37.5 (29.9-47.1)</td>
<td></td>
</tr>
<tr>
<td>At or above poverty</td>
<td>1322</td>
<td>24.4 (21.1-28.4)</td>
<td></td>
</tr>
<tr>
<td>Country of birth</td>
<td></td>
<td></td>
<td>.30</td>
</tr>
<tr>
<td>United States</td>
<td>1580</td>
<td>26.8 (22.8-31.6)</td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>206</td>
<td>19.6 (11.4-33.6)</td>
<td></td>
</tr>
<tr>
<td>Other ∫</td>
<td>135</td>
<td>30.8 (18.9-50.3)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: GED, general equivalency diploma; HPV, human papillomavirus.
* By wald x² statistic.
† Race and ethnicity were self-reported; other race (n=109) is not shown.
‡ This analysis was limited to females older than 17 years.
§ Does not sum to 1921 because some of the responses are missing.
∫ Other includes any country other than the United States or Mexico.
AGE

The prevalence of HPV infection is highest in young women and coincides with initiation of sexual activity. While most studies indicate a decrease in HPV prevalence with age, a few studies conducted in several different international regions have shown a peak prevalence of HPV infection in women below age 25, a decrease among women aged 35 to 54 and a second peak after age 55 (Figure 1) (19). The observed increase in HPV prevalence in the older age groups could be attributed to reactivation of latent virus.

![Figure 1. Age-specific prevalence of HPV (data source: Herrero et al., 2000)](image)

GENDER

Men. Although HPV infection appears to be common in men, no data is yet available on incidence or persistence of HPV infection in men specifically. A recent Danish study has found a prevalence of 33.8% HPV infection (n=374 in male conscripts 18-29 years) by PCR. The number of sex partners during the study was the most important risk factor for acquiring HPV. In the United States, the incidence of anal cancer among men who have sex with men is higher than the incidence of cervical cancer among women. The presence of HPV-16 DNA in penile carcinoma biopsies (n=57) was examined by PCR. Thirty-eight biopsies were HPV-16 DNA positive. This data corroborates that squamous cell carcinoma is invariably associated with HPV-16 DNA (20).

Women. For adolescents, cumulative HPV incidence rates have been approximately 40% (21, 12) and prevalence rates as high as 80% (22). Of these infections, 60% to 75% are caused by high-risk viral types, with types 16, 18, and 52 being identified the most often in adolescents. Approximately 1% of HPV infections are associated with genital warts, with types 6 and 11 identified most often (23). Despite the rate of anogenital infection, very few result in cellular changes, genital warts, intraepithelial neoplasia, or cancer. Most infections (70% to 90%) are contained by the host immune system and become undetectable within 6 to 10 months (8, 22, 25). In adult women HPV-16 and HPV-18 cause 60% to 70% of cervical cancers worldwide. Other HPV types are responsible for the remaining cases. Furthermore, persistent HPV infection is necessary for clinical progression to CIN 3 (24).

Family. The dynamics of HPV transmission between parents and infants was recently published by a Finnish HPV cohort study. Serial genital and oral scrapings from 76 families, including mother, father, infant, and semen samples were collected over 2 years and analyzed by PCR. The most common HPV profile was high-risk (HR) HPV in all family members (29%); followed by HPV positive mother-infant pairs (26%). HPV positive father-infant pairs were less frequent (11%), and in 8% of the families, only the infant was HR HPV positive. The prevalence of genital HR HPV in the parents ranged from 13% to 25%, and that of oral HPV ranged from 8% to 34%. In the infants, HPV DNA was detected in 15% of the genital and 10% of the oral samples at birth, reaching peaks of 18% and 21%, respectively, at 6 months, and declining to 10% at 24 months. Persistent maternal cervical HPV and subclinical oral HPV increases the risk of infant HPV (26).

HPV in Children. The epidemiology of anogenital HPV infections in children is less well-delineated at the population level. The mean age at presentation of anogenital warts in case series of children has ranged from 2.8 to 5.6 years (27, 28, 29). Among eight series of 17 to 75 cases of anogenital HPV infection in children, the proportion thought to have acquired HPV from sexual abuse, range from 3% to 35% (31, 28, 31, 32). The likelihood of sexual abuse as the means of acquisition of anogenital infection in children appears to increase with age (33). Nonsexual transmission from common skin warts appears likely to occur in some cases. Autoinoculation from a nongenital cutaneous wart to the genitalia, heteroinoculation from one individual to another, and transmission from contaminated objects (fomites) to hand and then to genital regions have been proposed as mechanisms of transmission of HPV (34, 35, 36).

CLINICAL SIGNIFICANCE

HPV in Anogenital Cancers. Tumors associated with HPV tend to occur in younger women with a past history of genital warts or cervical dysplasia and arise from the in situ lesions similar to those found in the cervix. The carcinomas are frequently of basloid or warty type (37). Tumors not associated with HPV occur in older women and are typically well-differentiated keratinizing squamous cell carcinomas arising in a background of differentiated vulvar intraepithelial neoplasia (38). The risk factors are unknown. Cervical cancer is the second most common cancer among women worldwide, with a mean age standardized incidence rate varying from 11.3 per 100,000 women in more developed countries to 18.7 per 100,000 women in less developed countries (6). HPV infections are very common in young women and frequently resolve spontaneously. The lifetime risk to ever contract HPV is estimated to
be 80% (39). Despite the high prevalence of HPV in cervical cancer, it’s a rare event occurring after a long period of viral persistence, which reflects the multi-step nature of HPV-induced cervical cancer. The progression toward cervical cancer requires additional genetic and epigenetic events. The majority of infected women appear to clear the virus by an effective immune response. Clearance of a HR-HPV infection has been linked to cytological regression (40, 41). On the other hand, a persistent HR-HPV infection appears to be a prerequisite for clinical progression and the development of cervical cancer (8, 42, 43).

Progression toward cervical cancer is a well orchestrated, multistep process that histologically evolves from pre-existing noninvasive premalignant lesions called cervical intraepithelial neoplasias (CINs) or squamous intraepithelial lesions (SILs). The progression from CIN I to CIN 3 and invasive cancer is associated with histological changes to the cervico-epithelial cells. There are some indications that some CIN 3 lesions may develop quickly (within 2 years following normal cytology), whereas it takes another 10 to 12 years for most CIN 3 lesions to develop into invasive cervical carcinoma (44). The path toward cervical carcinogenesis and the progression from CIN I to CIN 3 is most likely HPV type-dependent, viral load dependent, host cell factors, genetic predisposition, and immune status related (Table 3). The quest for cellular, viral, and immune markers for the role of HPV in cervical carcinogenesis is the research objective of Medical Diagnostic Laboratories, L.L.C.

Vaginal, vulvar, and penile cancers are very rare, with incidence rates of about 1 per 100,000 per year. The causal relationship between HR-HPV infection and cervical cancer has become evident from epidemiological and functional studies (2, 6). HR-HPV has been detected in up to 99.7% of cervical squamous-cell carcinomas (45, 2) and 94% to 100% of cervical adeno and adenosquamous carcinomas (46, 47). HPV infection was detected in 70% to 100% of anal cancers (48, 49). In vaginal and penile carcinomas the HPV prevalence is about 60% (50) and 30% to 42% (44). The path toward cervical carcinogenesis and the progression from CIN I to CIN 3 lesions to develop into invasive cervical carcinoma (44). The path toward cervical carcinogenesis and the progression from CIN I to CIN 3 is most likely HPV type-dependent, viral load dependent, host cell factors, genetic predisposition, and immune status related (Table 3). The quest for cellular, viral, and immune markers for the role of HPV in cervical carcinogenesis is the research objective of Medical Diagnostic Laboratories, L.L.C.

POSSIBLE USES OF HPV TESTING

Triage. HPV testing could be used as a triage for women with Pap smear findings of atypical squamous cells of unknown significance (cells that are atypical but not definitively dysplastic). Those who test positive for HR-HPV types would be referred for colposcopy (53).

Surveillance. HPV testing could be used as a means of surveillance of women after treatment for high-grade lesions or micro-invasive cancer. Those who test positive for HR-HPV types would be monitored more closely than those who test negative (53).

Primary Screening. HPV testing could be used as a primary screening method for high-grade lesions among women aged 30 or older. Those who test positive for HR-HPV would undergo diagnosis via colposcopy (53, 6).

Table 3. Risk of squamous-cell cervical cancer according to HPV Type.

<table>
<thead>
<tr>
<th>HPV Type Risk</th>
<th>HPV Type</th>
<th>Patients</th>
<th>Controls</th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative for HPV</td>
<td>46</td>
<td>1091</td>
<td>84.4</td>
<td>1.0</td>
</tr>
<tr>
<td>16 High</td>
<td>685</td>
<td>50.5</td>
<td>42.3</td>
<td>434.5 (278.2-678.7)</td>
</tr>
<tr>
<td>18 High</td>
<td>177</td>
<td>13.1</td>
<td>17.1</td>
<td>248.1 (138.1-445.8)</td>
</tr>
<tr>
<td>31 High</td>
<td>36</td>
<td>2.7</td>
<td>8.0</td>
<td>123.6 (53.5-286.0)</td>
</tr>
<tr>
<td>33 High</td>
<td>14</td>
<td>1.0</td>
<td>1.0</td>
<td>373.5 (46.7-2985.8)</td>
</tr>
<tr>
<td>35 High</td>
<td>15</td>
<td>1.1</td>
<td>6.0</td>
<td>73.8 (26.4-206.5)</td>
</tr>
<tr>
<td>39 High</td>
<td>8</td>
<td>0.6</td>
<td>0.0</td>
<td>--</td>
</tr>
<tr>
<td>45 High</td>
<td>74</td>
<td>5.5</td>
<td>9.0</td>
<td>197.6 (91.7-425.7)</td>
</tr>
<tr>
<td>51 High</td>
<td>13</td>
<td>1.0</td>
<td>4.3</td>
<td>66.5 (20.0-221.0)</td>
</tr>
<tr>
<td>52 High</td>
<td>37</td>
<td>2.7</td>
<td>4.0</td>
<td>200.0 (67.8-590.1)</td>
</tr>
<tr>
<td>56 High</td>
<td>9</td>
<td>0.7</td>
<td>5.4</td>
<td>45.1 (14.0-143.3)</td>
</tr>
<tr>
<td>58 High</td>
<td>31</td>
<td>2.3</td>
<td>6.0</td>
<td>114.8 (45.1-292.6)</td>
</tr>
<tr>
<td>59 High</td>
<td>17</td>
<td>1.3</td>
<td>1.0</td>
<td>419.2 (54.2-3242.4)</td>
</tr>
<tr>
<td>68 Low</td>
<td>2</td>
<td>0.2</td>
<td>0.1</td>
<td>53.7 (4.4-550.1)</td>
</tr>
<tr>
<td>73 High</td>
<td>5</td>
<td>0.4</td>
<td>1.0</td>
<td>106.4 (11.4-991.8)</td>
</tr>
<tr>
<td>6 Low</td>
<td>1</td>
<td>0.1</td>
<td>0.5</td>
<td>4.3 (0.5-38.4)</td>
</tr>
<tr>
<td>11 Low</td>
<td>1</td>
<td>0.1</td>
<td>2.0</td>
<td>11.2 (1.0-128.0)</td>
</tr>
<tr>
<td>81 Low</td>
<td>0</td>
<td>0.0</td>
<td>0.6</td>
<td>--</td>
</tr>
</tbody>
</table>

Other single HR § | 10 | 0.7 | 0.0 | -- |

Other single LR ¶ | 0 | 0.1 | 19 | 1.5 |

16 and other LR | 5 | 0.4 | 1 | 130.8 (14.7-1161.7) |

16 and other HR | 23 | 1.7 | 1 | 617.4 (80.8-4716.4) |

16 and 18 | 36 | 2.7 | 3 | 327.2 (95.7-1119.1) |

18 and other HR | 21 | 1.5 | 3 | 187.0 (52.8-662.3) |

Other - 2 infections | 29 | 2.1 | 15 | 12.2 | (25.6-106.7) |

3 infections | 10 | 0.7 | 4 | 65.4 (19.3-221.7) |

4 or 5 infections | 3 | 0.2 | 2 | 32.5 (5.1-206.8) |

Total women | 1356 | 100.0 | 1292 | 100.0 | -- |

Multiple infections | 127 | 9.4 | 29 | 114.9 (68.8-191.7) |

Single infections | 1183 | 87.2 | 172 | 133.2 | (122.2-243.7) |

* CI denotes confidence interval, HR high-risk types, and LR low-risk types. Women from Spain and Colombia have been excluded from this analysis.

† The odds ratio were adjusted for age center.

‡ HPV type X denotes specimens that were positive with the GBS +/6+ systems but that did not hybridize with any of the 33 probes.

§ This category includes HPV types 26, 66, 82, and HR.

¶ This category includes HPV types 54, 43, 40, 42, 44, 61, 70, 72, and CP6108.

www.mdlab.com • 877 269 0090
GUIDELINES FOR HPV TESTING

Major medical groups like the American College of Obstetricians and Gynecologists (ACOG), the American Cancer Society (ACS), and the American Society for Colposcopy and Cervical Pathology (ASCCP) support HPV testing.

ACOG Summary of Recommendations & Conclusions for HPV Testing (Adopted from ACOG Practice Bulletin Number 61).

The following recommendations are based on good and consistent scientific evidence (Level A):

- Because HPV DNA testing is more sensitive than cervical cytology in detecting CIN 2 and CIN 3, women with negative concurrent test results can be reassured that their risk of unidentified CIN 2 and CIN 3 or cervical cancer is approximately 1 in 1,000.
- Studies using combined HPV testing with cervical cytology have reported a negative predictive value for CIN 2 and CIN 3 of 99% to 100%.
- Human papillomavirus DNA testing is not recommended in women with LSIL, atypical squamous cells that cannot exclude high-grade squamous intraepithelial lesions, or atypical glandular cell cytology.
- The triage of women with ASCUS cytology using reflex HPV DNA testing for high-risk types when liquid-based cytology was used at the time of the initial visit eliminates the need for a repeat office visit and is a more sensitive triage tool than repeat cytology while referring fewer women to colposcopy.
- Women with high-risk HPV who have ASCUS or LSIL cytology but are not found to have CIN 2 or CIN 3 at their initial colposcopy have approximately a 10% risk of having CIN 2 or CIN 3 within 2 years. The following recommendations are based on limited or inconsistent scientific evidence (Level B):
- Use of a combination of cervical cytology and HPV DNA screening is appropriate for women aged 30 years and older. If this combination is used, women who receive negative results on both tests should be retested no more frequently than every 3 years.

The following recommendations are based primarily on consensus and expert opinion (Level C):

- Women older than 30 years with a negative cytology result who have high-risk HPV DNA positive test results should have both tests repeated in 6 to 12 months. Those with persistent high-risk HPV (on repeat testing) should undergo colposcopy regardless of the cytology result.
- Human papillomavirus DNA testing could be used as a test of cure for women with CIN 2 or CIN 3 at 6 to 12 months following excision or ablation of the transformation zone. Those with high-risk HPV should be referred for colposcopy.

The National Institutes of Health (NIH), National Cancer institute (NCI), and ASCCP co-sponsored a workshop in 2004 to formulate guidelines for HPV testing (56). The conclusions of the workshop are as follows:

- HPV DNA testing may be added to cervical cytology for screening in women aged 30 years or more.
- Women whose results are negative by both HPV DNA testing and cytology should not be rescreened before 3 years.
- Women whose results are negative by cytology, but are high-risk HPV DNA positive, are at a relatively low-risk of having high-grade cervical neoplasia. They should not routinely have a colposcopic evaluation. Instead, HPV DNA testing along with cervical cytology should be repeated in these women at 6 to 12 months.
- If test results of either are abnormal, colposcopy should then be performed. This guidance should assist clinicians in utilizing HPV DNA testing in an effective manner, while minimizing unnecessary evaluations and treatments.
Figure 3. HPV structure and function.

MOLECULAR BIOLOGY OF HPV

HPV Genome. HPVs are DNA tumor viruses whose genome is organized in three regions: the early gene (E1 to E7), the late gene (L1 and L2) regions and the upper regulatory region (URR) (Figure 3). The early and late gene regions are both protein encoding, but the URR is non-encoding (59). The URR possesses numerous binding sites for many repressors and activators of transcription, suggesting that it may play a part in determining the range of hosts for specific HPV types (60). E1 and E2, meanwhile, encode proteins that are vital for extrachromosomal DNA replication and the completion of the viral life cycle. The E2 also encodes two proteins: one, which inhibits transcription of the early region; and the other, which increases the transcription of the early region. A hallmark of HPV associated cervical carcinoma is loss of the expression of the viral E2 protein (61).

The E4 protein is expressed in the later stages of infection when complete virions are being assembled, and is not known to have transforming properties; however, it is considered to play an important role for the maturation and replication of the virus (62). The E4 protein also induces the collapse of the cytoplasmic cytoskeleton network in human keratinocytes, a situation which may assist the release of virions from the infected cell (63). The E5 in open reading frame (ORF), meanwhile, is often deleted in cervical carcinoma cells, indicating that it might not be essential in maintaining the malignant transformation of the host cell. When present, E5 interacts with various transmembrane proteins like the receptors of the epidermal growth factor, platelet-derived growth factor and colony stimulating factor-1 (64). A study using HPV 16-infected cells found the E5 protein to possess weak transforming activity (65). In the protein-encoding regions, the E6 and E7 ORF are considered to play the most major roles. These two units encode for oncoproteins that allow replication of the virus and the immortalization and transformation of the cell that hosts the HPV DNA (43, 59, 66, 67, 68). The late region units, L1 and L2 encode for viral capsid proteins during the late stages of virion assembly (59). The protein encoded by L1 is highly conserved among different papillomavirus species; antibodies against the bovine papillomavirus, therefore, have been used to identify HPV capsid proteins in human tissues. The minor capsid protein encoded by L2 has more sequence variations than the L1 protein; hence, antibodies against the L2 protein have been a source of antigen for specific types of HPV antibodies.

DNA Integration. The HPV DNA is usually extrachromosomal or episomal in benign cervical precursor lesions. However, in many cervical cancer cells as well as in cervical cancer cell lines and HPV-transformed human keratinocytes in-vitro, the HPV DNA is integrated in the host genome (59). Cancer tissues may contain both episomal and integrated HPV DNAs at the same time, although integration appears to occur more frequently in HPV-18 associated cervical cancer than in HPV-16 associated cervical cancer (65). During HPV DNA integration, the viral genome usually breaks in the E1/E2 region. The break usually leads to the loss of the E1 and E2 regions. The loss of E2, which encodes proteins, including one that inhibits the transcription of the E6 and E7 regions, has been known to result in uncontrolled and increased expression of E6 and E7 oncogenic proteins. Meanwhile, increased expression of E6 and E7, has been observed to lead to the malignant transformation of the host cells and to tumor formation (69, 70, 71). HPV viral integration into the host genomic DNA is associated with progression from polyclonal to monoclonal status in CIN, and these events play a fundamental role in the progression from low-grade to high-grade cervical neoplasia (72).

The Molecular Biology of HPV-mediated Transformation. The first step in HPV-mediated cellular transformation is via activation of viral oncoproteins E6 and E7 as a result of E2 down regulation. High-risk HPV E6 complexes, via a cellular protein E6-associated protein (E6-AP), with the tumor suppressor gene product p53, resulting in a rapid ubiquitin-dependent proteolytic degradation of p53 (73). E6 mediated interference of p53, functions together with inactivation of the pro-apoptotic Bak protein by E6, preventig cells from undergoing apoptosis, resulting in a state of genetic instability and enhancing the risk of malignant conversion (74) (Figure 4).

E7 binds to and degrades the tumor suppressor pRb, thereby interfering with their control on the G1/S transition of the cell cycle (75,76). Inactivation of Rb by high-risk HPV E7 results in the upregulation of its upstream inhibitor p16(INK4A). Since p16(INK4A) expression is regulated by an Rb-dependent negative feedback loop, continuous inactivation of pRb by high-risk HPV E7 results in increased p16(INK4A) levels and can be detected in
HPV-infected CIN lesions and cervical carcinomas (77). Hence, the detection of increased p16(INK4A) expression together with the determination of HPV type-specific in urogenital specimens may provide a promising marker for the detection of HPV-mediated dysplasia with deregulated E7 expression (78) (Figure 5).

The demonstration of p53 and pRb tumor suppressors’ inactivation by the E6 and E7 HPV oncoproteins, provides a basic explanation on how high-risk HPV types induce their oncogenic effects on cervical cells (79). When a cell suffers DNA injury or damage, p53 protein activates the transcription of genes like p21 (CIP1/WAF1) or GADD45, affecting a delay in the cell’s entry into the S phase until DNA repair is accomplished. The inactivation of p53 by the E6 oncoprotein, therefore, results in the deregulation of the cell cycle and allows cellular mutations to occur (Figure 6) (80). The binding of the E7 oncoprotein on pRb provides a complementary function. The binding releases transcription factor E2F that activates the expression of genes that stimulate DNA synthesis in the cell. If earlier E6 action had freed the same cell from p53 control, that cell survives into the S phase with a damaged DNA and, through E7 action, is able to replicate the HPV DNA (81) (Figure 6). The oncogenic properties of E6 and E7, as well as their effects on p53 and pRb, have provided the general basis for further investigations of the role of HPV in carcinogenesis in the HPV-infected cervix. Major findings in these areas are summarized in Table 3 (82). Specifically how the oncogenic effects of the HPV oncoproteins are suppressed or reversed in such conditions, and when such conditions occur physiologically, remains to be understood. DeFilippis et al recommended that strategies that inhibit the expression or activity of either E6 or E7 protein are likely to inhibit the growth of HPV associated cancers (83).

Figure 5. Effect of high-risk HPV E7 on pRb and p16(INK4A).

Figure 6. High-risk HPV E6 and E7 mediated cellular transformation.
MOLECULAR DIAGNOSIS OF HPV INFECTION

HPV diagnosis is mostly based on molecular techniques, because the virus cannot be readily cultured and the humoral immune response is detectable for many years (84). Since the natural history of HPV infection, the mode of transmission, development of persistent infection and clearance of the virus are partially known, detection and genotyping of HPV DNA in consecutive samples are essential to confirm persistent virus infection over time (85). Persistence of HPV infection is often defined as the detection of the same HPV type in consecutive samples obtained at 3 to 6 month intervals.

HPV Nucleic Acid Detection. HPV DNA can be detected in Pap smears and biopsy specimens by many nucleic acid based tests. HPV DNA assays can be performed using the same specimen as used for cytological examination and/or other STDs. For instance, MDL utilizes the OneSwab® and UroSwab® specimen collection and transport kits for females and males, respectively.

HPV Type-Detect® 2.0 by Bio-Plex technology. MDL is proud to offer the next generation of HPV Type-Detect® technology, the HPV Type-Detect® 2.0 by Bio-Plex Analysis. This new assay is an improvement upon the current PCR technology for multiplexing by using PCR in combination with a liquid microarray system. HPV Type-Detect® 2.0 targets the L1 major capsid region. This region is a suitable target, because a diverse genetic region is contained within a more conserved region for all the detected HPV subtypes. The assay utilizes PCR to amplify a general region with subsequent detection of specific subtypes utilizing type specific oligonucleotide probes. The multiplexed assay detects 19 subtypes simultaneously distinguishing between both high-risk and low-risk subtypes.

Bio-Plex is a multiplex suspension array system that utilizes polystyrene 5.6 micron microspheres internally dyed with red and infrared fluorophores. The microsphere beads are made with different dye intensities, and with 100 different bead types the user is able to develop up to 100 different assays simultaneously. The surface of the bead uses simple coupling chemistry in order to attach an oligonucleotide probe that will hybridize to an amplified DNA template (Figure 6). High tech fluidics based on the principles of flow cytometry cause a stream of suspended microspheres to line up in single file before passing through a detection chamber. As a microsphere passes through the detection chamber, a red laser excites both the internal red and infrared dyes, allowing classification of the microsphere to one of the hundred detection channels. A green laser excites any orange fluorescence associated with the binding of the DNA template. The reporter readings are made on each individual particle, and the classification can be determined by the Bio-Plex instrument.

The Hybrid Capture® 2 HPV DNA Test, Digene Corp., USA. The Hybrid Capture® 2 (HC2) test identifies 18 clinically significant HPV types. The HC2 kit consists of a Dacron® swab and a transport tube packaged in a cardboard container supplied by the manufacturer. The sample is collected from the endocervix and ectocervix with the swab, which is then placed in the proprietary transport medium. The specimen is denatured in the laboratory, and the liberated single-stranded DNA is hybridized in a solution with an RNA probe mix consisting of five (5) low-risk genotypes (6, 11, 42, 43 and 44), and 13 high-risk HPV types (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68). The resulting bound DNA-RNA “hybrids” are reacted with an antibody directed against the hybrids. A chemiluminescent substrate, which binds to the antibody, is added and a signal output is recorded. Most recent studies have evaluated HC2 as an intermediate screening test in women with abnormal cytologic findings rather than as a primary screening test. A highly significant correlation appears to exist between a positive test and the finding of CIN or invasion on histologic examination (86). One study of 311 women with a cytologic diagnosis of LSIL, HSIL or cancer found that when used alone, the HC2 test had a sensitivity of 74% for the detection of CIN; sensitivity increased to 91% when a positive HC2 test was coupled with an abnormal Pap smear (LSIL, HSIL or cancer) (87). Among the age of 30 to 35 years or older, the sensitivity of a single lifetime HC2 test for detection of high-grade dysplasia has been about 80% to 90%, and specificity of 57% to
89% (53, 89, 90). In 44 women with ASCUS, 6 of the 10 women with high-grade lesions were identified by HC2 HPV testing. In 96 women with LSIL on Pap smear, 29 of the 37 high-grade lesions were detected by the HC2 HPV test. This 60% to 76% sensitivity is somewhat higher than the 58% sensitivity previously reported for repeating the Pap smear alone (91).

The HC2 assay limitations:
- HC2 assay can not identify type specific HPV.
- The detection limit of HC2 assay is about 5,000 HPV genome equivalents, which makes it less sensitive than PCR (92, 93).
- Cross-reactivity of the two probe cocktails may reduce the clinical relevance of a positive result (94, 95).
- Patients with cervical cancer may have poor recovery of HPV because of tumor necrosis and bleeding which may alter the test results.
- Unable to detect HPV-HR Type 66.

HPV VACCINES

The immune system normally controls viral infections by neutralizing a virus with a specific antibody or by killing virally infected cells. HPV infection does not cause a systemic infection; it does not kill keratinocytes and it induces no response, or a poor slow local inflammatory response. Humoral immunity does not appear to be as important as cell-mediated immunity in clearing HPV infection, but rather is important in protecting an individual from becoming infected. In natural infection, only around 50% of those becoming HPV DNA positive show a neutralizing antibody response.

Currently, there are two different types of vaccines: prophylactic vaccines that would elicit an antibody response and prevent infection, and therapeutic vaccines which would induce a specific and cell-mediated response leading to regression of already preexisting lesions. In June 2006, the quadrivalent HPV vaccine types 6,11,16,18 (Gardasil®, manufactured by Merck and Co., Inc., Whitehouse Station, New Jersey) was licensed for use among females aged 9 to 26 years and is the first vaccine developed to protect against most HPV-type-related cervical cancer, cervical cancer precursors, vaginal and vulvar cancer precursors, and anogenital warts. This prophylactic vaccine works by preventing four HPV types: HPV 16 and 18, which cause 70% of cervical cancers, and HPV 6 and 11, which cause 90% of genital warts. The vaccine has no therapeutic effect on HPV-related disease, so it will not treat existing diseases or conditions caused by HPV.

The licensed HPV vaccine is composed of the HPV L1 protein, the major capsid protein of HPV. Expression of the L1 protein in yeast using recombinant DNA technology produces noninfectious virus-like particles (VLP) that resemble HPV virions. The quadrivalent HPV vaccine is a mixture of four HPV type-specific VLPs prepared from the L1 proteins of HPV 6, 11, 16, and 18 combined with an aluminum adjuvant. Clinical trials indicate that the vaccine has high efficacy in preventing persistent HPV infection, cervical cancer precursor lesions, vaginal and vulvar cancer precursor lesions, and genital warts caused by HPV types 6, 11, 16, or 18 among females who have not already been infected with the respective HPV type. No evidence exists of protection against disease caused by HPV types with which females are infected at the time of vaccination. However, females infected with one or more vaccine HPV types before vaccination would be protected against disease caused by the other vaccine HPV types. In a Phase II clinical trial 276 women who received the quadrivalent vaccine, the efficacy for prevention of persistent infection was with HPV 6, 11, 16 or 18 was 89.5%.

In a Phase III clinical trial of 5,442 women aged 16 to 23 years, vaccine efficacy was 100% for prevention of any grade CIN related to HPV types 6, 11, 16 or 18 (96). GlaxoSmithKline filed in early 2007 for approval in the United States for a similar preventive HPV vaccine, known as Cervarix®. It is designed to prevent infection from HPV types 16 and 18; however, some cross-reactive protection against virus strains 45 and 31 were shown in clinical trials. Cervarix® is created using the L1 protein of the viral capsid which induces the formation of neutralizing antibodies. A double blind, multi-centre, randomized, placebo-controlled Phase II clinical trial of 1113 women between 15 to 25 years of age in the United States and Brazil demonstrated vaccine efficacy of 91.6% against incident infection and 100% against persistent infection with HPV types 16 and 18 (97).

Therapeutic vaccines are very much in the infancy compared with prophylactic vaccines. Most of these vaccines focus on the main HPV oncogenes, E6 and E7 whose expression is required for promoting the growth of cervical cancer cells and cells within warts. Therapeutic vaccines may be able to elicit immune responses against these two oncogenes thereby eradicating established tumors. A number of these vaccines have been studied in phase I/II clinical trials in humans, including women with CIN, vulvar intraepithelial neoplasia (VIN) and advanced cervical cancer.

Vaccination will not eliminate the need for cervical cancer screening in the United States because not all HPV types that cause cervical cancer are included. It is not a substitute for routine cervical cancer screening, and vaccinated females should have cervical cancer screening as recommended.

REFERENCES

www.mdlab.com • 877 269 0090
The future of MDL’s HPV Type-Detect® diagnostics is the inclusion of prognostic indicators that will determine a woman’s risk of progressing to cervical cancer following infection with HPV. Several assays that evaluate multiple variables are currently being developed and include:

- Aberrant expression of cell cycle regulating genes
- Methylation status of host and viral gene promoters
- Phosphorylation patterns of cell cycle regulating proteins
- Genetic alterations/duplications that may arise as a result of HPV transformation
- Transforming affects of HPV E6 and E7 proteins

In pursuing these research courses, MDL will identify cellular and/or viral alterations that may serve as cues in linking the progression of HPV infection to transforming events and provide a sensitive method for monitoring affected individuals.
OneSwab®

One vial... multiple pathogens